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ABSTRACT

Analysts and scientists are interested in automatically analyzing
the semantic contents of unstructured, non-tabular data (videos,
images, text, and audio). In order to extract semantic information,
analysts have turned to machine learning (ML), which can be used
in unstructured data analytics systems. The most common method
of using ML in analytics systems is to call them as user-defined
functions (UDFs). Unfortunately, UDFs can be difficult for query
optimizers to reason over. Furthermore, they can be difficult to
implement and unintuitive to application users.

Instead of specifying ML models via UDFs, we instead propose
specifying mappings between virtual columns in a structured table,
where virtual rows are sparsely materialized via ML models. Query-
ing sparsely materialized tables has unique challenges: even the
cardinality of tables is unknown ahead of time, rendering a wide
range of standard optimization techniques unusable. We propose
novel optimizations for accelerating approximate and exact queries
over sparsely materialized tables to address these challenges, pro-
viding speedups of up to 2-350%. Users are further able to directly
query columns as in standard structured tables, removing the need
to reason about opaque UDFs. We implement our techniques in
AIDB and deploy them in four real-world datasets. Several of these
datasets were constructed with collaborators including law profes-
sors studying court cases, showing AIDB’s wide applicability.
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1 INTRODUCTION

In recent years, analysts and scientists are increasingly interested in
analyzing unstructured data in the form of videos, images, text, and
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audio. Application users ranging from scientists to business analysts
can query the semantic contents of this data to understand the real
world. A traffic analyst could query video data to understand traffic
patterns; a social scientist can query newspaper scans to track
sentiment over historical news events; a business analyst could
query retail store footage to optimize store layout.

Increasingly, these application users are leveraging machine
learning (ML) to extract semantic information. For example, the
urban planner could use an expensive deep neural network (DNN)
such as Mask R-CNN to find object types and locations, which can
subsequently be used to count cars or perform other traffic analy-
ses. Unfortunately, these ML methods can be incredibly expensive:
analyzing a small town’s worth of video (100 camera-months) could
cost millions in cloud compute credits [28]. Furthermore, these ML
methods are difficult to implement for non-experts.

To address the cost and usability of ML-based queries, recent
work has exposed these ML methods as user-defined functions
(UDFs) in query systems, in which ML methods are called as opaque
functions [11]. This body of work has also proposed many opti-
mizations to reason about these opaque functions, such as using
embeddings [27] or indexes [22] to group similar rows. Other work
focuses on separate tables for ML models [34] or accelerating ap-
proximate queries over unstructured data [5, 24-26, 33].

Unfortunately, UDFs (and user-defined table functions, UDTFs)
have two major drawbacks. Consider a query that uses an object
detection model to extract a car’s position and subsequently exe-
cutes a color classification model based on this data (Figure 1). The
first drawback is that it is difficult to optimize over opaque UD(T)Fs,
especially those expressed in nested queries. As mentioned, full
materialization over moderate-sized datasets could cost millions
of dollars, so is infeasible. Second, writing queries often requires
complex, nested table expressions and understanding opaque UDFs.

To address these drawbacks, we propose a novel data model,
AIDM, that allows application users to directly query ML model
outputs as standard SQL tables, through virtual columns and virtual
rows. AIDM is enabled by the key observation that the output of
ML models is deterministic! and expensive to compute. We further
propose novel techniques to optimize both approximate and exact
queries over AIDM schemas, despite the data not being materialized.
We implement AIDM and these optimizations in AIDB, a novel,
open-source system for ML-based queries.

The output of ML models is deterministic when the random seed is fixed, up to
floating point error.
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WITH object_detection_table AS (
SELECT
videoName , frameNum,
explode (detectObjects (videoName , frameNum)) AS objects
FROM vieo_table
), car_color_table AS (
SELECT
*

identifyCarColor (videoName , frameNum , objects.x)
AS carColor
FROM object_detection_table
)
SELECT * FROM car_color_table

(a) Example of using UDFs and UDTFs in Spark to answer a query
about car colors. Executing this query requires complex nested table
expressions and opaque UDFs.

SELECT * FROM color_table;

(b) Example answering the same query with AIDB.

Figure 1: Example of a query using Spark vs AIDB.

In AIDM, a schema consists of a table identifying the underlying
unstructured data, derived tables generated by ML methods, and
user-defined metadata. The only required table is a table containing
a unique identifier for every unstructured data blob, e.g., the frame
number in a video or a Tweet identifier. The primary key must
be the blob id. Then, the data engineer can construct any number
of derived tables, which take in as input any other tables’ column
and outputs one or more rows against a fixed schema, generated
from an ML model. Concretely, consider the task of identifying
cars in frames of a video and their colors. The first model may
be an object detection model, which takes as input the frame id
and outputs object types and positions. The second model may
be a color identification model, which takes in a frame id and car
position and outputs a color. Finally, the data engineer can associate
metadata with any table, such as timestamps with frame ids.

The overhead for specifying the mappings via the ML methods
often is as few as 10 lines of configuration code per table. Further-
more, once the data engineer defines the unstructured blob table
and the derived tables, application users (e.g., data scientists) can
simply specify queries against the schemas of the tables. In partic-
ular, the application user does not need to reason about opaque
UDFs, allowing for much simpler queries (Figure 1).

Due to the cost of ML models, we first propose novel methods
of answering arbitrary approximate linear aggregation [26] and
selection queries in sparsely materialized tables (i.e., over AIDM
schemas). Since each virtual row can be deterministically gener-
ated, AIDB generates query plans by sampling unstructured blob
ids and re-weighting samples to obtain an unbiased estimate of
the statistic of interest. We extend this method to arbitrary approx-
imate selection queries [25]. We further propose an incremental
query processing technique in which rows are incrementally gen-
erated as queries are executed and used in subsequent queries for
improved performance. Finally, we show that a range of prior opti-
mizations can easily be implemented in AIDB. These optimizations

include embedding-based indexes to query processing algorithms
for approximate selection and aggregation.

We further propose methods to accelerate exact queries with
complex predicates. Traditional query planning executes the predi-
cates in a fixed ordering. We show that executing the predicates by
cost results in efficient queries. Instead, we can optimize the predi-
cate ordering on a per-row basis to execute the ML models most
likely to match a predicate first. We show that our optimization
matches optimal static ordering without knowledge of the optimal
ordering.

Finally, we propose methods for efficient physical query exe-
cution via caching and parallelization. As the mapping of the ML
models is fully specified, given a set of input rows, we can assume
that the output is fixed. Thus, AIDB can simply cache the output of
any ML model execution, partially materializing the virtual rows.
In particular, many previous systems require complex reasoning
about UDFs for caching, which is challenging for systems builders
to implement and for users to reason about performance. Further-
more, since the generation across rows is independent, AIDB can
parallelize execution trivially.

We deployed AIDB on a wide range of applications, including
social science, life science, and business applications, to show its
applicability. Our workloads include those from law professors
at Stanford University and the University of California, Berkeley,
economists at Harvard, and urban planning. By deploying on a
wide range of use cases, we have found that AIDB is both flexible
enough for a wide range of scenarios and efficient.

We further evaluated AIDB on video, image, and text datasets,
showing that it can handle a wide range of scenarios. We compare
AIDB to existing systems for ML-based queries and show that it
can answer a wider range of queries and outperform these systems
by up to 2-350X.

In summary, our contributions are:

(1) AIDM, a data model for ML-based queries that does not
require users to reason about opaque UDFs.

(2) AIDB, an open-sourced query engine for executing arbitrary
AIDM queries.

(3) Novel optimizations for query processing for ML-based queries,
which can deliver up to 2-350x improvement over existing
systems.

2 BACKGROUND

Analyzing unstructured data. In this manuscript, we refer to
unstructured data as data where the information of interest is not
natively present in a schema. This unstructured data is typically
video, image, text, or audio data. As these unstructured data volumes
have been growing, so has the demand for analyzing such data. It
is infeasible to manually analyze this data, so practitioners are
increasingly using ML.

The data systems community has been building systems and
algorithms to leverage ML methods to automatically serve queries
over unstructured data. These systems and algorithms include query
processing algorithms (for selection [5, 25, 33], aggregation [23],
limit queries [22, 23], etc.), indexes [27], execution engines [28], and
others [7, 21]. Many of these optimizations focus on approximate



answers, as exhaustively executing ML models on all of the data
can be prohibitively expensive for many applications.

To execute ML models, many of these systems expose the models
via user-defined functions (UDFs). These UDFs are typically executed
externally via some service or some custom function implementa-
tion. For example, the data engineer could call Amazon Rekognition
Video’s or Google Cloud Video Intelligence’s API to obtain object
types and positions in a video.

Although these UDFs are extremely flexible, they are difficult
for both users and query optimizers to reason about performance.
As the UDFs are typically externally executed, they cannot reason
about the inputs. Thus, several research groups have developed
techniques for optimizations over these opaque UDFs, such as in-
dexing techniques [22, 27]. As a result, query execution costs can
be difficult for end users to estimate.

Deployment patterns. Typically, the person or team that deploys
the ML models is not the same as the person or team that performs
the analysis. In corporate settings, typically a data engineer deploys
the ML models and a data scientist performs the analysis. Similar
patterns happen in academic settings. We refer to the person that
sets up the ML models as the data engineer and the person that
performs the analysis as the data scientist or application user.

ML models and APIs. In recent years, ML models have greatly
expanded in their capabilities. In tandem, many ML models are
increasingly becoming accessible (sometimes exclusively) behind
APIs. For example, OpenAT’s best language models are only acces-
sible behind APIs at the time of writing. These APIs make it easier
for non-experts to use ML since they do not need to set up remote
servers with GPUs or install complex packages.

In addition to being simple to use, these APIs also have pre-
dictable costs. For example, all of Google Cloud Vision [18], Ope-
nAl [37], AWS Rekognition [4], and many others have costs per
example (e.g., image) or token (i.e., piece of text). The predictability
of costs makes it easier for users to reason about their usage.

However, the convenience comes at a hefty price. As an example,
consider Google Cloud Vision’s object detection capabilities. The
base price is $2.25 per 1,000 images. Computing object detection
over a month of video would cost $177,400, far outside of the budget
of many applications. As a result, reducing the cost of answering
queries is critical.

3 USE CASES

We describe several use cases for AIDB. These use cases were in-
spired by collaborations with domain experts from Stanford Law
School, Harvard Economics, and others.

3.1 Analyzing Newspaper Scans

Economists, political scientists, and other social scientists at Har-
vard and other institutions have collected over 10TB of historical
newspaper scans. The social scientists are interested in answering
questions pertaining to social science. As a concrete example, one
question may be “how did trust in science evolve after the introduc-
tion of the polio vaccine” In order to answer such questions, the
social scientists must extract information from these newspaper
scans.

To do so, they first apply a layout detection model to the scans
[39] to determine which parts of the newspaper contains text. This
model takes as input a PDF scan (for the time being we assume a
single page) and outputs a list of boxes and their content type (e.g.,
cartoon, headline, or article body). Then, for all of the headlines and
article bodies, they apply an OCR model [35]. The OCR model takes
the region of the scan and outputs the text within the image scan.
Finally, they can use named-entity recognition [36] and sentiment
detection [38] to find headlines and article bodies about the polio
vaccine and determine its sentiment.

We show an example of a potential data model corresponding
to this use case in Figure 3. As shown, these mappings can be
complex and nested. They further require many ML models. The
queries span multiple tables and would require multiple UD(T)Fs if
implemented in the current standard method of using ML models.

3.2 Video Analytics Example

Consider an example of an urban planner studying traffic patterns.
Suppose the urban planner has access to two video feeds, numbered
1 and 2, with 10,000 frames each. The urban planner is interested
in studying traffic patterns across these two cameras.

The data engineer first specifies the base tables referencing the
underlying video. The primary key for the base table is a composite
key with the video feed identifier and the frame number.

Then, the data engineer specifies that an object detection model
takes as input a unique video frame, as specified by the composite
key. Given the frame, the object detection model outputs zero or
more rows with the following schema: an opaque object identifier
(such as an auto-increment primary key), object type (among a
fixed list), xy coordinates (four floating point numbers), and the
confidence (a floating point number between 0 and 1).

As a final extension, the urban planner may be interested in the
make and model of cars. To classify the cars, the data engineer
can register a classification model which takes as input the frame
identifier, object identifier, and xy coordinates. Given these inputs,
the model will output no rows if the object type is not a car and
will output a single row with the predicted make and model if the
object type is a car.

We show a diagram of the schema and mappings in Figure 2.

4 AIDM

To address the difficulties of querying unstructured data with UDFs,
we propose AIDM, a data model for interacting with ML mod-
els via declarative queries. AIDM consists of three components:
base table(s) with references to the underlying unstructured data,
mappings of ML model input columns and output columns, and
user-specified metadata. By fully specifying ML models through
the schema, application users need not reason about opaque UDFs.

In working with our collaborators, we have found the separation
of the ML model execution and the schema (from the perspective
of the application user) to be critical: a data engineer can simply
set up AIDM and any non-expert user can query the virtual tables.
In contrast, we have found UDFs to be difficult to use.
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Figure 2: Example of a data model for a traffic camera dataset. An object detection model takes a frame (associated with a blob
id) and produces a list of object types and positions. Given the list of cars, a separate ML model produces the car type (e.g.,

sedan vs SUV) and color.
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Figure 3: Example of a data model corresponding to a real-world social science analysis. Given a set of historical scans of
newspapers, we can use a layout detection model that segments the pages, producing a list of boxes and types (e.g., image,
text). Then, we can use an OCR model along with a sentiment detection model to determine the contents of the boxes.

We now describe the full specification of AIDM. As mentioned,
AIDM has three components: the base table(s) referencing the un-
derlying unstructured data, the mappings between ML models, and
user-specified metadata. We describe each in turn.

Base tables. AIDM’s first component is base tables that provide
identifiers for the underlying unstructured data. Each base table
contains a primary key that references an unstructured data blob.
The base tables are fully materialized. For example, the base table
in the video example has a composite primary key that references
the camera id and the frame id.

An AIDM schema can have more than one base table if there
are multiple sources of underlying data. In the case of analyzing a
video conferencing meeting, the data engineer may have one table
for the screen share and one table for the participants’ video.

As exemplified by the previous example, the data engineer has
flexibility in deciding the base tables’ schemas. The analyst may
wish to treat all videos identically or may be interested in studying
the videos in a time-synced manner. Depending on the require-
ments, the data engineer could also have the screen share video
and participants’ video be in one table.

ML model mappings. AIDM’s second component is the mappings
between ML model inputs and outputs. In AIDM, every ML model
can have one or more columns (possibly across tables) as input. The

output is one or more columns (also possibly across tables). Every
row as input produces zero or more rows as output.

If an ML model has input that has columns spanning multiple
tables, AIDM has the following constraints to ensure that inputs
for ML models can be deterministically generated. The input set of
tables must have primary-foreign key relationships and the input
set of columns must contain these keys.

AIDM also requires that the mappings between columns be
acyclical. In particular, construct a graph G with a directed edge
from column c; to c;j if there is an ML model mapping with input
¢; and output cj. AIDM requires that G be a directed, acyclic graph
(DAG).

Finally, AIDM requires that every generated column have a par-
ent and requires that every column with no parents be fully ma-
terialized. The columns with no parents are typically base table
columns.

In the urban planning example, the object detection model maps
the frames to objects. As a frame may contain no object or many
objects, zero or more rows can be generated. The car make/model
classification model maps the frame and object to the prediction of
the make/model.

User-defined metadata. AIDM’s final component is user-defined
metadata columns and tables. In many cases, the application user is
interested in analyzing the semantic contents of the unstructured



data in conjunction with metadata, such as timestamps. As a result,
AIDM allows every table to have additional columns with user-
defined metadata and additional tables that are user-defined.

This metadata is often application specific. As mentioned, times-
tamps are a common piece of metadata. Other metadata could
include the object types of an object detection model or metadata
about video conferencing participants.

We have implemented a prototype system, AIDB, for answer-
ing AIDM queries. In this work, we focus on and develop novel
algorithms for efficient aggregation queries but also develop op-
timizations for exact queries. We describe the system design and
novel algorithms below.

5 AIDB OVERVIEW

We have created AIDB, an open-source system for implementing
and executing AIDM queries. AIDB supports both exact queries
and approximate queries (which are of interest due to the cost of
ML models).

AIDB consists of many of the same components a traditional
query engine contains, including a query parser, optimizer, and
execution engine. However, the cost of ML models necessitates
changes in the architecture, particularly for approximate queries.
One major difference of note is that AIDB contains a structured
query engine as part of its architecture.

AIDB is implemented in Python for ease of integration with ML
model frameworks. AIDB also provides a command line interface
for application users to use standard SQL for specifying queries.

In the remainder of this section, we describe common features
for executing exact and approximate queries in AIDB. We further
describe how to execute exact queries in AIDB. In the next several
sections, we describe AIDB’s novel optimizations.

5.1 AIDB Architecture

As mentioned, AIDB contains many of the same architectural com-
ponents a standard query engine contains, including a query parser,
optimizer, and execution engine. Several components are similar to
standard structured query engines, such as query parsing. However,
due to the cost of ML model execution, AIDB aggressively caches
ML model outputs; we describe the caching algorithm below. This
caching causes several architectural differences, which we highlight
below.

First, AIDB contains a structured query engine for its caching
layer. As part of query execution, AIDB will typically execute a
structured query against the structured query engine as its first
step. To understand why, consider a limit query searching for 10
common events. If AIDB has executed previous queries that match
the predicate, AIDB can directly return cached results for the limit
query. We describe AIDB’s caching and query execution below.

Second, AIDB will execute ML models by calling external func-
tions. To do so, AIDB provides an API for arbitrary ML models.
Data engineers must provide the callback or external service. We
describe the API below.

5.2 Specifying AIDM Schemas

To specify AIDM schemas, AIDB accepts standard configuration
formats (YAML) [9]. The data engineer must specify:

(1) Table schemas and column types,

(2) Input and output columns for the ML models,

(3) Whether or not the ML model is a one-to-one mapping or
one-to-many mapping, and

(4) ML model execution logic

in the specification. For all base tables, the data engineer must
provide the full table (i.e., the universe of unstructured data blob
ids).

In order to specify the ML model mapping and execution, the
data engineer must specify the input/output columns for ML models
and the ML model execution logic. The blob id is a required input
to all ML models. To specify the ML model execution logic, the data
engineer must either implement a Python or REST APIL The Python
API takes as input a Pandas dataframe with the input columns and
their values and outputs the output columns and their values. The
REST API takes the same inputs and outputs but as JSON instead.

Finally, we optionally allow the user to specify cost functions
and preferred batch sizes for models. These costs can either be the
cost of the API call (e.g., the cost of calling a Google Cloud Vision
model) or the estimated cost of a self-hosted model (e.g., the GPU
cost). These costs are used to provide cost estimates to users.

5.3 Interface for ML Models

There is a wide range of ML models that users of AIDB will be
interested in deploying. These include API-gated models (e.g., GPT-
3, Google Cloud Vision) and self-hosted models (e.g., BERT, Mask
R-CNN). AIDB aims to support a wide range of models efficiently.

In order to support this wide range of models, AIDB supports
two interfaces: a direct Python interface and a REST interface. In
both cases, the data engineer must implement a wrapper that takes
blob ids and any derived rows/columns and returns a dataframe
with the results conforming to the schema.

Each ML model in our real-world deployments requires only
a few lines of code (LOC), with some as little as 37 LOC. These
include both external APIs and self-hosted models.

5.4 Naive Generation of AIDM Rows

Given an AIDM specification, we describe how a system could
materialize the rows against the schema. Recall that the graph G
specifies the relationships between the columns. The graph G has
nodes ¢; which represent the columns in the schema. We further
associate every edge e; with an ML model my.

Suppose the system wishes to materialize rows against a set of
columns C = {c;}. The first step is to recursively find all parents
of ¢; € C. Denote the parents and the columns to materialize as
C’. The next step is to collect the minimal set of edges between C’
and the ML models associated with these edges, M = {my}. Then,
for every base table row, we execute the ML models in order of a
topological sort of the columns C” by walking down the edges.

In the next two sections, we describe how to optimize query
execution for both approximate and exact queries in AIDB.



6 EXECUTING APPROXIMATE QUERIES

In addition to answering exact queries, we provide novel algorithms
for answering approximate queries. In contrast to many structured
approximate query systems, the rows are not materialized ahead
of time (see Section 9 for an extended discussion). Furthermore,
in contrast to many unstructured approximate query systems that
answer specific queries [5, 23, 24, 26, 33], AIDB is designed to
answer arbitrary approximate linear aggregation® [26] and selection
queries [25].

Because AIDM rows are not materialized ahead of time, standard
techniques for pre-computing statistics or summaries cannot be
used. As such, AIDB must decide how to sample without this pre-
computed information.

One possible solution would be to uniformly sample from the
base table records and compute the average from the sampled rows.
However, as we describe, standard forms of uniform sampling can
result in arbitrarily bad query results.

In the remainder of this section, we describe why uniform sam-
pling fails and our novel stratified sampling algorithms for answer-
ing AIDM queries. We further describe how to incorporate prior
techniques into AIDB.

6.1 Naive Uniform Sampling Gives Incorrect
Results

To understand the intuition behind why various forms of uniform
sampling would give incorrect results, we first highlight the se-
mantics behind approximate queries in AIDB. There is a range of
error semantics for approximate queries, ranging from best-effort
to confidence intervals with guarantees of validity.

For the settings we consider, where scientific inferences or busi-
ness decisions are made based on the results of queries, it is critical
to have confidence intervals with guarantees of validity. In particular,
best-effort systems can return query results that are arbitrarily far
from the true answer.

In order for uniform sampling to give confidence intervals, the
uniform sample must be drawn from the correct distribution. Con-
sider a simple query with two blob ids (1 and 2) where blob id 1 has
one derived row with value 0 and blob id 2 has two derived rows
of values 3 and 6 respectively. The correct average of the derived
rows is 3, but if we placed uniform weights on blob ids 1 and 2, this
would result in 2.25. As we can see from this example, the sampling
bias is unknown when performing naive uniform sampling from
blob ids.

We now formally describe why two forms of uniform sampling
do not draw samples from the correct distribution.

Setting. Consider the setting of computing the mean of a single,
derived column C = {Cj,...,Cp}. Formally, we wish to compute
E[C] = % Y. C;. Further consider the blob id column B = {1, ..., m}.
There is a one-to-many mapping f : B — C from the blob ids to
rows in the column C. Each blob id can generate zero or many rows
in C.

We consider two sampling algorithms and show that they do not
achieve valid estimates of E[C]. Although we consider the case of
2Linear aggregation queries are aggregation queries where the result is a linear combi-

nation of the statistics, which includes sums, counts, and averages. It does not include
max, min, or count distinct.

an average query without predicates, our analysis easily extends to
the setting of predicates and other linear statistics.

Example. Before we formally prove that the naive uniform sam-
pling of blob ids gives incorrect results, we first provide an example.
Consider the setting with two blob ids, one that generates a single
derived row with value 10 and the other that generates two derived
rows with value 1. The true average is 4.

However, if we sample by blob id and average by the average
of derived rows, we obtain the estimate 102+ 1 — 5.5, Furthermore,
sampling a blob id, then sampling a randomly derived row will also
fail for the same reason: the weights on the rows would be 1/2, 1/4,
and 1/4 respectively (for 10, 1, and 1), giving an estimate of 5.5.

We now formally prove why uniform sampling fails.

Uniformly sampling blob ids. We first consider the strategy

of uniformly sampling from blob ids, then computing all of the

statistic C; for the sampled blob id, and averaging the results.
Formally, we compute

B8 | (7 2

ief(j)

which is not equivalent to E[C]. To see this, consider replacing the
expectation with the exhaustive sum over B:

1
B8 | 7] 2 O IBIZIf(J)I 2, ¢

ief (j) jeB ef(J)

=2, |B| - If(J) Cz € f(NI

ieC
Ci
=)y
As such, uniformly sampling from blob ids does not result in
valid estimates of the statistic of interest.

Uniformly sampling C; after uniformly sampling blobs. An-
other sampling strategy would be to uniformly sample among the
C; after uniformly sampling a blob id. However, this has the same
expectation as the prior sampling distribution, which immediately
follows by observing that:

Ejp [Biap(j)Cil = Bjub |
|f(J)|
ief(Jj)

due to the definition of the expectation.

Discussion. The core problem with uniform sampling strategies
is that we do not have access to direct access to samples from C.
Naive adjustments based on only local information from the blob
id are insufficient to correct for the incorrect sampling distribution.
This problem motivates our stratified sampling algorithm.

6.2 Stratified Sampling

Algorithm. AIDB uses stratified sampling by default to answer
approximate queries. Stratified sampling splits the samples into
disjoint sets (call strata), computes the statistic of interest among
the strata, and combines the results [29].



Algorithm 1 AIDB’s sampling algorithm

1: function STRATIFIEDSAMPLING(T)
2 S={0:k=1,..,K}
3 while Budget T not exhausted do
4 B; « SampleBlob(B)
5 s — |f(Bi)]
6 Cj < SampleColumn(B;)
7: Sk =S U{Cj}
&  U=XrlSl R
: Estimate = % 2ok |Sk|Sk
10: return Estimate

Denote the strata as Si, so that C = UpSy. Standard stratified
sampling requires knowledge of the strata sizes and computes

ISk .
E[C] = Zk: T ElCi s i € Sel.
In our setting, we do not have access to direct samples from C; (or
underlying statistics about C;, such as |C|), which prevents us from
using standard stratified sampling.

Instead, we construct a novel stratified sampling algorithm. AIDB’s
stratified sampling algorithm works by sampling random blob ids,
then random C; from the blob ids. After exhausting its budget,
AIDB will stratify C; such that S = {C; : |f(Bj)| = k}. Denote pj
to be the true proportion of each stratum and py. to be the plug-in
estimator. AIDB will then return the estimate

. Ci
k- Pr —_.
Zkl iezs‘j( [Sk|
Importantly, the strata are weighted appropriately, which gives
unbiased estimates (assuming samples from every stratum). We
present a formal algorithm in Algorithm 1.

Intuitively, AIDB’s stratified sampling algorithm works by natu-
rally grouping relevant records by the number of derived records.
This allows us to draw C; uniformly at random within each strata,
without knowing the strata ahead of time.

Validity. Proving the validity of AIDB’s estimator requires one
additional assumption: that each blob id generates at most K derived
rows. To understand why this assumption is necessary, suppose
there were 1 billion blob ids, where every blob id generated one
derived row except one blob id which generated 1 trillion rows.
Then, if the single blob id is missed, the estimate can be arbitrarily
far off.

Given our assumption, proving the validity of AIDB’s estimator
requires two parts: proving that the bias of AIDB is small (from
the probability of missing a stratum) and that AIDB’s estimates for
individual strata are unbiased.

We formalize the validity statement with the following theo-
rem. Our theorem controls the bias of AIDB’s estimator, which
is in contrast to uniform sampling, which can give arbitrarily far
estimates.

THEOREM 6.1. The bias of AIDB’s estimator decays exponentially
fast in the number of samples n:

n
E[C-C] < K - max |C;] - (l —mkinpk)
1

where py. = %
Proor. We first show that AIDB’s per-strata estimator is unbi-
ased conditional on drawing samples. Namely,

E[Cr — CilISk| = 1] = 0.

This follows immediately since the probability of drawing a blob
id within Sy, is uniform and the probability of drawing a sample C;
given a blob id is also uniform.

We can then decompose the bias of AIDB’s estimator as follows:

E[C-C] = > BlpCr - piCr]
k
= > BlpiCk = prCelISil = 11P(S] = 1)
k

+E[prCr — pkCrlISk| = 01P(|Sk| = 0)
= > ElprCi — pkCelISkl = 01P(ISi] = 0)
k

where the last line follows because the per-strata estimator is unbi-
ased. We can then bound the remainder term by considering each
term:

E[pxCr — piCrlISk| = 01P(ISk| = 0) < max CiP(ISk| = 0)
= m?X|Ci| (1-pe)"

The theorem follows from summing the k terms. O

Computing confidence intervals. As we have shown, the bias
in AIDB’s estimator decreases exponentially with the number of
samples. However, we must still compute valid confidence intervals
for scientific and high-stakes business decisions.

Since AIDB’s estimator is biased, we cannot directly use standard
confidence interval methods. Instead, AIDB will compute two terms:
an upper bound on the bias and an upper bound on the error from
the variance.

To compute the upper bound on the bias, AIDB can form an
estimate of miny py from the samples drawn using standard multi-
nomial confidence intervals. To compute the error from the vari-
ance, AIDB can use standard tools for unbiased estimators, such as
sub-Gaussian approximations or the bootstrap.

Accounting for queries with predicates. Our analysis above
shows an optimized query execution procedure for queries without
predicates. To extend AIDB’s procedure to queries with predicates,
we can first perform rejection sampling, where we discard samples
that do not match the predicates. Our analysis directly follows from
standard tools of rejection sampling.

6.3 Approximate Selection

Setting and challenge. We further propose methods of perform-
ing arbitrary approximate selection queries over AIDM schemas.
Approximate selection queries (SUPG queries) were proposed by
Kang et al. [25], in which the query returns a set of records that
match the predicate with a specified recall or precision target. For
brevity, we describe how to extend recall target queries for AIDM
schemas when only the blob id is selected. Precision target queries



can be similarly implemented and selection of columns beyond the
blob id is similarly simple to implement.
As in SUPG, we assume the existence of a proxy.

Extending SUPG. The core challenge behind the SUPG algorithm
on AIDM schemas is that a blob id can generate many rows in a
nested fashion. SUPG assumes that the blob id selected is associated
with a single row. Roughly, SUPG approximates the probability that
a blob id matches a predicate and uses this information to select a
set of blob ids that satisfies the recall target.

In order to extend SUPG to AIDM, instead of estimating prob-
abilities, we estimate the number of rows that a blob id produces
that matches a predicate. To understand why this is sufficient, sup-
pose we had a selection query that only selected blob ids and that
we knew the exact number of rows generated per blob id. Then,
AIDB could simply compute the cardinality of the exact query and
greedily select blob ids until the recall target is met.

Because we do not know the number of records that match
a predicate, we instead use our stratified sampling algorithm to
estimate the following quantities: the cardinality of the result of
the exact query, a lower bound on the cardinality of the set of
positive records above the estimated cutoff (as in SUPG), and an
upper bound on the cardinality of the set of positive records below
the estimated cutoff. These quantities are sufficient to perform the
confidence interval correction as SUPG uses.

6.4 Incorporating Prior Work

In addition to its stratified sampling algorithm, AIDB can incorpo-
rate optimizations from prior work. As a concrete example, consider
TASTI [27], which is an index for unstructured data. TASTI gener-
ates proxy scores for downstream algorithms, such as ABAE [26]
or SUPG [25]. TASTI does this by grouping records that are seman-
tically similar and labeling a small number of the records as cluster
representatives.

To use TASTI in AIDB, we could create an auxiliary table with
the TASTI groupings as a metadata table. This table would store
the closest cluster representatives and their distances for every un-
structured data blob. Then, downstream query processing could use
these groupings to generate proxy scores via the TASTI algorithm.
Finally, these proxy scores can be used for accelerated approximate
queries.

Finally, AIDB’s query processing system is flexible enough to
accommodate other methods of sampling. As concrete examples,
we have implemented BLAZEIT’s aggregation algorithm and the
SUPG approximate selection algorithm in AIDB.

7 EXECUTING EXACT QUERIES

Given an AIDM specification, we describe how AIDB answers
queries that require exact answers. We first describe an overview of
how AIDB can answer exact queries using filtered full scans, which
requires materializing any unmaterialized rows necessary for the
query. We then describe novel optimizations in AIDB, including
novel caching and cost estimation algorithms. We conclude this sec-
tion by describing how AIDB optimizes exact queries, optimizing
either for cost or latency.

To understand why new methods of caching and cost estima-
tion are necessary, we re-emphasize two points about real-world

analytics with ML. First, ML models can be incredibly expensive:
invoking a single ML model on a single frame of video can be as
expensive as a structured aggregation query over billions of rows.
Second, due to the costs of executing ML models, many systems do
not fully materialize all of the rows (in AIDM) or UDFs (in prior
systems).

As a result, all rows generated from ML models in AIDM are
initially virtual, until materialized. In order to reduce the cost of
query execution, it is critical that AIDB cache results from ML
model execution. Furthermore, the set of rows materialized for any
given query will change as new queries are executed. Thus, cost
estimation must take into account which rows are materialized for
accurate estimates.

Given AIDB’s novel caching and cost estimation procedures, we
describe how AIDB optimizes query execution for exact queries.
Intuitively, AIDB aims to use as many cached (i.e., materialized)
rows as possible, before selecting the cheapest materialization plan
on the remaining unmaterialized rows. Furthermore, AIDB can
parallelize execution to reduce latency.

7.1 Full Scans with Filtering

As we have described in Section 5, AIDB can answer any query
by first fully materializing all rows and using a standard DBMS to
answer the query. However, this is inefficient and too expensive for
many applications.

Recall that, to answer exact queries in an unoptimized way,
AIDB can perform a full scan to materialize rows until the query is
answered. To do so, denote the set of columns (across tables) that a
given query, Q, touches to be C = {c;}.

To optimize the full scan, AIDB can perform filtering based on
metadata and blob ids. Because metadata and blob ids are fully
materialized, AIDB will first execute a structured query to select
these records and filter them based on any predicates in the query.
Then, for the remaining columns, AIDB will perform a full table
scan based on the row generation procedure above until the query
is satisfied (i.e., AIDB will terminate early for limit queries).

As an example, consider the following query for the urban plan-
ning use case:

SELECT c.color, COUNT(c.blob_id)

FROM Colors ¢ JOIN Blobs b

ON c.blob_id = b.blob_id

WHERE b.timestamp > 10AM and b.timestamp < 12PM

GROUP BY c.blob_id

In this query, the user counts the number of cars of a specific color
per frame from 10 AM to 12 PM (this query is used for illustrative
purposes).

The color query accesses three columns: the blob id, the times-
tamp, and the color. The blob id and timestamp are fully material-
ized, so AIDB can filter by timestamp before materializing the color
column. Since the color column has a dependency on the Box table,
AIDB must first fully materialize the relevant rows in the Box table.

7.2 Optimized Exact Queries

To further optimize exact queries, we implemented several other
optimizations in AIDB. Our first optimization is to cache the results
of ML model execution for reuse in subsequent queries. Our second
optimization is to order the execution of ML models to reduce the



cost as much as possible. In particular, we perform the ordering
of ML models on a per-blob id basis, which is in contrast to stan-
dard structured data query plans which decides at the query level.
As we describe, this can have dramatic effects on overall query
performance.

We now describe our caching algorithm and how to order ML
model execution on a per-row basis.

7.2.1 Caching. As mentioned, prior work exposes ML model out-
puts as UDFs. Unfortunately, as UDFs are opaque functions, they
are difficult to reason about. For example, UDFs in general may not
be deterministic.

In contrast, AIDM specifications contain the exact relationship
between input columns and output columns. Because ML models
are deterministic up to floating point error,> AIDB can simply cache
the output of ML models as materialized rows. However, since ML
models can potentially output zero rows, AIDB must mark which
input rows have been processed by which ML models. AIDB uses
an auxiliary table per ML model to do so, where the table columns
are the ML model input columns along with a Boolean column
specifying if the ML model has been executed over the input row.

The overhead for caching is a boolean value per ML model exe-
cution. We have found that the ML model execution far dominates
the storage overhead in every use case we consider.

7.2.2  Ordering ML Model Execution. We now describe the neces-
sity to order ML model execution and how AIDB orders ML model
execution.

Necessity of per-row ordering. Another critical decision AIDB
must make is the order in which the ML models are executed. In
standard structured query processing systems, the ordering is often
decided at the query level. This is done because it is not worth the
overhead of per-row decisions for structured data processing. How-
ever, ML models are typically expensive enough for the overhead
to be worth the cost.

To understand the relative costs, consider the cost of using a
cached result compared to executing a typical ML model (e.g., to
materialize another column). Fetching a cached result may take
50ms of compute time, which would cost $0.00000101388 using a
standard AWS RDS instance (db. t4g.medium). In contrast, using
Google Cloud Vision API for object detection would cost $0.00225,
which is 2219 more expensive than retrieving a cached row. Even
within ML models, the costs can vary by an order of magnitude or
more: OpenAl’s most powerful language model (davinci) is 50X
more expensive than their cheapest language model (ada) at the
time of writing.

In addition to considering costs, AIDB must consider selectivity
as well. Suppose we have two predicates based on models A and B
with selectivities of 100% and 50% respectively (which are unknown).
Even if A is 100X cheaper than B, it would be optimal to run B first.

Optimization procedure. In order to optimize queries, AIDB will
construct cost estimates, generate per-row selectivity estimates,
and will then execute the query with cached results.

3Some models have stochastic execution which can be made deterministic by fixing
the random seed.

The first step is to obtain cost estimates for executing ML models.
If the user provides the costs (e.g., pricing of external APIs), AIDB
will use these costs. Otherwise, AIDB will profile the ML model
execution time. This step only needs to be done once. Although ML
model execution costs can vary (e.g., with text sequence length),
we have found that using average execution costs is sufficient for
our queries. This is largely because the cost differentials between
models are much higher than the cost differentials between data.

In order to account for caching, AIDB approximates the cost of
retrieving from the cache as zero. As we have shown above, this
heuristic is often close enough to reality.

The next step is to generate per-row selectivity estimates for the
predicates. In order to do so, AIDB requires access to proxy scores
[25]. AIDB will convert the condition in the query to conjunctive
normal form (CNF). For each row (in the flattened schema), AIDB
can compute the estimated cost and selectivity for every clause in
the CNF. AIDB will order the ML model execution by the cost of the
CNF clauses, where the cost is defined by the selectivity multiplied
by the ML model costs. It will also update the cost of the formulas
as the ML models are executed.

7.3 Efficient Physical Query Plans

Given an optimized logical query plan, AIDB must efficiently exe-
cute these queries. The overwhelming cost of query execution in
AIDB is the ML models. Thus, we primarily focus on efficient ML
model execution.

For API-gated ML models, the costs are often fixed. Reducing
the total number of API calls results in the cheapest queries.

However, for self-hosted ML models, this is often not the case.
One major performance consideration for self-hosted ML models
is batching. The aggregate throughput (and therefore cost) of ML
model execution scales down poorly: the throughput of optimized
ResNet-50 execution can be 4x higher at batch size 32 compared to
batch size 1 [40].

Thus, to ensure high-performance query execution, AIDB must
batch ML model execution efficiently. To do so, AIDB leverages the
preferred batch size that is specified in the configuration.

Since AIDB executes the computational DAG per blob id, it
batches by collating inputs to an ML model grouped as closely
by the blob id as possible. For example, consider a simple DAG
where model A is executed on the blob id and always generates two
rows that model B executes. Suppose the batch size is 32 for both
models. AIDB will execute A on 32 blob ids at a time. It will collect
the results for every 16 blob ids to execute model B. In general, this
process is done at query execution time.

7.4 Cost Estimation for Exact Queries

A critical component in AIDB is cost estimation. Many application
users, particularly scientists, have limited budgets. It is critical to
ensure that queries are not executed outside of their budgets.

At first glance, cost estimation for queries with ML models may
seem simple, as ML models have predictable costs. In fact, ML
model serving systems that are agnostic to queries leverage this
consistency to achieve tight SLAs [19].

Unfortunately, cost estimation for queries with ML models is not
straightforward due to unmaterialized rows. Consider the urban



planning example: the color column has a variable number of rows
generated per blob id since there are a variable number of cars per
frame. Furthermore, a query may have filters on upstream columns,
e.g., a query that only queries cars in the left-hand side of the frame
need not materialize all rows in the color table. Finally, the cached
rows can dramatically affect query costs.

AIDB performs cost estimation online for a given query. It esti-
mates the cost of generating the derived rows and columns per blob
id by randomly sampling blob ids and generating the information
necessary for the query. By doing so per query, its estimates are
valid and also account for cached rows. Furthermore, the estimation
cost is independent of the query execution time. Under reasonable
settings, it requires only sampling in the low hundreds of blob ids.

8 EVALUATION

We evaluate AIDB on four datasets, spanning text and video as
modalities to show the generality of AIDB. We show that AIDB
can accelerate approximate queries by up to 350X compared to
prior work. We further show that AIDB’s exact query execution
optimizations can match optimal static ordering plans without
knowledge of the optimal plans.

8.1 Experimental Setup
Datasets and models. We evaluated AIDB on four datasets:

(1) night-street [24], a widely studied video dataset [6, 24,
33]. We used three models: a weather detection model that
classifies the weather in the scene, an object detection model
that locates and classifies objects in the scene, and a color
classification model that classifies cars detected by the object
detection model.

tweets [15], a dataset of tweets. We used topic detection,
named entity recognition, sentiment detection, and hate
detection models [10].

arxiv [12], a dataset of arXiv papers. We used PDFMiner
to perform layout extraction and OCR [1], and TextBlob
to do sentiment detection [32]. The arxiv dataset was in-
spired by a similar analysis conducted by Harvard University
economists.

law, a custom dataset which we created with collaborators
from Stanford and Berkeley law schools. The dataset con-
sists of PDFs. We jointly perform layout extraction and OCR
with PDFMiner [1] and perform sentiment detection with
TextBlob [32].
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For each model, we used the cost of a hosted API. For the vision
models, we used the Google Cloud Vision API [18]. For the text
models, we used the Google Natural Language API [17].

Baselines. To the best of our knowledge, the most comparable
systems are using UD(T)Fs in Spark [42] and MindsDB [34]. Neither
have optimizations implemented in AIDB for approximate or exact
queries. As a result, they execute ML models statically over the
entire database to answer queries. Due to the cost of executing
ML-based queries, we emulated using MindsDB and Spark UDFs
by using various static orderings of ML model execution.

SELECT SELECT frame,
FROM car_color
WHERE color LIKE
RECALL_TARGET 75
CONFIDENCE 095;

object_id

'grayish_blue’

(a) Example of an approximate selection query selecting grayish
blue cars in the night-street dataset. car_color is a table derived
from the objects table, which is derived from the blob IDs.

SELECT AVG(sentiment)
FROM sentence_sentiments
ERROR_TARGET 5%
CONFIDENCE 95;

(b) Example of an approximate aggregation query selecting
the average sentiment across sentences in the law dataset.
sentence_sentiment is a derived table.

Figure 4: Examples of approximate queries that we use in
the evaluation.

Queries. We executed a variety of exact and approximate queries
with AIDB. The baselines do not support the approximate queries
we consider in this work, so we compute exact results with the
baselines for the approximate queries. For each optimization we con-
sider (ML model ordering for exact queries, optimized approximate
aggregation, and optimized approximate selection), we execute
one query per dataset. These queries were derived from real-world
workloads. We show examples in Figure 4.

Metrics. The primary metric we measure is the dollar cost of
query execution. Because executing the queries multiple times
is expensive, we pre-computed the answers and simulated query
execution. We measure the dollar cost of the ML model execution by
computing the number of ML model execution and computing the
cost of using an external ML service (e.g., OpenAl, Google Cloud
Vision API, etc.). We further measured the cost of running a cloud
VM for the AIDB service, but this is negligible for all queries we
consider in this work (<1% of the total cost).

We did not measure accuracy as all of our queries give statistical
guarantees on accuracy.

8.2 AIDB Accelerates Approximate Queries

We then investigated how AIDB’s optimizations for approximate
queries affected query performance. There are a number of systems
specialized for specific forms of approximate queries, such as ap-
proximate selection queries only on blob ids [25]. Since we have
implemented these optimizations in AIDB, AIDB performs the same
as these specialized systems on these specific queries. Instead, we
focused on approximate queries that prior work does not support.
We executed a complex approximate selection query on derived
tables and aggregation queries on derived tables.

Approximate aggregation. We first investigated whether AIDB
could accelerate approximate aggregation queries that prior work
does not support. To do so, we executed four approximate aggrega-
tion queries on derived tables for the four datasets (one per dataset).
We targeted a 5% error rate for all queries.
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Figure 5: Dollar cost of aggregation queries for baselines and
AIDB. Prior work does not support approximate aggrega-
tion queries on nested data, requiring full materialization.
As shown, AIDB can achieve up to orders of magnitude im-
provement by supporting approximate aggregation.

As shown in Figure 5, AIDB can dramatically reduce the cost of
aggregation queries, producing 25-350x cheaper queries compared
to exact queries. We emphasize that these queries are not supported
by prior work. Furthermore, all queries achieved the confidence
bound.

Approximate selection. We next investigated whether AIDB
could accelerate approximate selection queries that are not sup-
ported by prior work. To do so, we executed four approximate
selection queries on derived rows, where a single ML model pro-
duces multiple output rows.

As shown in Figure 6, AIDB outperforms baselines for recall tar-
get queries by up to 4.3X. Furthermore, AIDB achieves its statistical
guarantees over many runs of query execution (e.g., with a 95%
confidence interval, it achieves the recall target on at least 95% of
the runs). As with aggregation queries, we emphasize that these
queries are not supported by prior work.

8.3 AIDB Accelerates Exact Queries

We first investigated whether AIDB’s optimizations for exact queries
outperform static orderings. In choosing queries, we evaluated
queries with predicates. To understand why, consider the simplest
query of SELECT * FROM TABLE. This query must evaluate all
ML models on all records of the table. Since ML model execution
is the primary bottleneck, no optimization will decrease the total
cost (except batching for locally executed models, but we focus on
API-hosted models in this work).

As a result, we focus on queries with predicates. We executed
a complex query with various selective predicates on the datasets
(summarized in Table 1). We measured two static orderings of the
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Figure 6: Dollar cost of selection queries for baselines and
AIDB. Prior work does not support approximate selection
queries with a recall target with nested data. As shown,
AIDB can outperform baselines on recall target queries by
up to 4.3%.

Dataset Predicate

night-street Red light, blue car

law Positive sentiment, specific organizations
arxiv Positive sentiment, early in document
twitter Positive sentiment, specific organizations

Table 1: Predicates used for the exact queries.

predicate execution: as ordered by predicate cost and as ordered
randomly. We compared these static orderings to AIDB’s optimized
query execution plans and measured the total cost of executing the
ML models. We executed these queries assuming the queries were
executed from scratch (i.e., with no caching beyond the construction
of the TASTI index).

We show the results in Figure 7. We first see that ordering
the predicates by cost is not always optimal. Nonetheless, AIDB
matches or outperforms the optimal static ordering plan for all
queries, despite not having access to the optimal plan.

8.4 Caching Accelerates Queries

Finally, we measured the effects of caching on query performance.
We first note that the exact experimental setup greatly affects the
performance of subsequent queries that leverage caching. As a
trivial example, suppose we executed a full scan (i.e., SELECT *).
Then, all downstream queries would be cheap.

To make the comparison as fair as possible, we executed 0
to 2 aggregation queries before executing a limit query for the
night-street dataset. We chose aggregation queries to execute
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Figure 7: Exact queries with predicates for exhaustive execu-
tion, ordering the most expensive predicate first, the least ex-
pensive predicate first, and AIDB. As shown, AIDB matches
or outperforms the optimal static ordering in all cases.

14 AIDB
Full scan

T T T

0 1 2
# of prior queries

Figure 8: Cost of executing a limit query after executing 0, 1,
or 2 prior aggregation queries on the night-street dataset.
As shown, caching substantially reduces the cost of query
execution.

first as they generally do not materialize a large fraction of the
TOWS.

We show the cost of the limit query after 0 to 2 previously ex-
ecuted queries in Figure 8. As shown, the cost of a limit query
substantially reduces with previously executed queries.

9 RELATED WORK

Structured approximate query processing. Approximate query
processing techniques can be divided into online and offline tech-
niques [31]. Offline techniques generate summaries (e.g., sketches or
pre-computed samples) to accelerate approximate queries [2, 3, 16].

These techniques assume the records are already present as struc-
tured data and can compute the summaries cheaply, e.g., based on
query workloads [31]. Many online techniques also rely on pre-
computed information, e.g., indexes [30]. As a result, these tech-
niques do not directly apply to the setting where the overwhelming
majority of the cost is in executing expensive ML methods. In AIDB,
we provide novel methods for approximate aggregation and selec-
tion queries for expensive ML-based queries. We further provide an
analysis of our stratified sampling algorithm, proving convergence.

Expressing ML-based queries. As the demand for ML-based
queries has increased, systems builders have created a number
of systems for expressing ML-based queries. The most common
method of incorporating ML models for queries is to expose them
as UDFs [5, 22, 33, 34]. UDFs require users and systems to reason
about opaque functions, which can be challenging. Other systems,
such as BlazeIt [23], have custom schemas, which are inflexible.
In contrast, AIDM allows data engineers to set application-specific
schemas over any ML-based queries. As we show, this enables real-
world applications with much less overhead compared to using
UDFs.

Efficient ML execution. Several systems aim to efficiently exe-
cute ML models, such as Clipper and TFX Serving [8, 13, 41]. Other
work aims to store data efficiently [14, 20] for efficient downstream
query execution. These systems are agnostic to analytics needs and
AIDB can leverage these systems in its query execution engine.
Several systems are specific to executing efficient queries, such as
SmoL [28]. These can also be used in conjunction with AIDB.

Other optimizations for ML-based queries. A large body of
recent work aims to optimize ML-based queries. One line of work
aims to optimize specific queries, ranging from selection queries
[5, 24, 33], aggregation queries [23], aggregation queries with pred-
icate [26], limit queries [22, 23], tracking queries [7], and top-k
queries [21]. This work is largely orthogonal to AIDB: these op-
timizations can be implemented within AIDB. In this work, we
focus on queries not supported by prior work, including complex
approximate aggregation and selection queries.

10 CONCLUSION

In this work, we propose AIDM, a novel method for specifying ML-
based queries. We implemented AIDB to execute AIDM queries and
design several novel optimizations to accelerate such queries, in-
cluding stratified sampling, parallelization, and caching algorithms.
To demonstrate AIDM’s flexibility, we deployed AIDB on a wide
range of workloads, including social science, life science, and urban
planning workloads. We further evaluated AIDB, showing that it
can answer a wider range of queries compared to previous systems
and that it can outperform prior systems by up to 350x. We hope
that AIDB will serve as a platform for future research in unstruc-
tured data analytics.
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